On Constraint Qualification for an Infinite System of Convex Inequalities in a Banach Space
نویسندگان
چکیده
For a general infinite system of convex inequalities in a Banach space, we study the basic constraint qualification and its relationship with other fundamental concepts, including various versions of conditions of Slater type, the Mangasarian–Fromovitz constraint qualification, as well as the Pshenichnyi–Levin–Valadier property introduced by Li, Nahak, and Singer. Applications are given in the restricted range approximation problem, constrained optimization problems, as well as in the approximation problem with constraints by conditionally positive semidefinite functions.
منابع مشابه
Convex Generalized Semi-Infinite Programming Problems with Constraint Sets: Necessary Conditions
We consider generalized semi-infinite programming problems in which the index set of the inequality constraints depends on the decision vector and all emerging functions are assumed to be convex. Considering a lower level constraint qualification, we derive a formula for estimating the subdifferential of the value function. Finally, we establish the Fritz-John necessary optimality con...
متن کاملOn Basic Constraint Qualifications for Infinite System of Convex Inequalities in Banach Spaces
The BCQ and the Abadie CQ for infinite systems of convex inequalities in Banach spaces are characterized in terms of the upper semi-continuity of the convex cones generated by the subdifferentials of active convex functions. Some relationships with other constraint qualifications such as the CPLV and the Slate condition are also studied. Applications in best approximation theory are provided.
متن کاملMangasarian-Fromovitz and Zangwill Conditions For Non-Smooth Infinite Optimization problems in Banach Spaces
In this paper we study optimization problems with infinite many inequality constraints on a Banach space where the objective function and the binding constraints are Lipschitz near the optimal solution. Necessary optimality conditions and constraint qualifications in terms of Michel-Penot subdifferential are given.
متن کاملConstraint Qualification, the Strong CHIP, and Best Approximation with Convex Constraints in Banach Spaces
Several fundamental concepts such as the basic constraint qualification (BCQ), the strong conical hull intersection property (CHIP), and the perturbations for convex systems of inequalities in Banach spaces (over R or C) are extended and studied; here the systems are not necessarily finite. Their relationships with each other in connection with the best approximations are investigated. As appli...
متن کاملNonexpansive mappings on complex C*-algebras and their fixed points
A normed space $mathfrak{X}$ is said to have the fixed point property, if for each nonexpansive mapping $T : E longrightarrow E $ on a nonempty bounded closed convex subset $ E $ of $ mathfrak{X} $ has a fixed point. In this paper, we first show that if $ X $ is a locally compact Hausdorff space then the following are equivalent: (i) $X$ is infinite set, (ii) $C_0(X)$ is infinite dimensional, (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 15 شماره
صفحات -
تاریخ انتشار 2005